Triangular Sums
Triangular Sums
时间限制:3000 ms | 内存限制:65535 KB
难度:2
- 描述
- The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):
X
X X
X X X
X X X XWrite a program to compute the weighted sum of triangular numbers:
W(n) =
SUM[k = 1…n; k * T(k + 1)]
- 输入
- The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle.
- 输出
- For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.
- 样例输入
-
12345434510
- 样例输出
-
12341 3 452 4 1053 5 2104 10 2145
水题,现在整理的是原先大一时候写的,语言入门的题目,几乎没什么难度,看看程序都能看懂,给有需要的人~~~
[cpp]
#include “iostream”
#include “stdlib.h”
using namespace std;
int main()
{
int temp,T,i,j,k,sumj,sum;
cin>>temp;
for(k=1;k<=temp;k++)
{
cin>>T;sum=0;
for(i=1;i<=T;i++)
{sumj=0;for(j=1;j<=i+1;j++) sumj+=j;sum+=i*sumj;}
cout<